
Journal of Computational Physics 215 (2006) 661–690

www.elsevier.com/locate/jcp
An efficient parallel/unstructured-multigrid
preconditioned implicit method for simulating 3D
unsteady compressible flows with moving objects

X. Lv a, Y. Zhao a,*, X.Y. Huang a, G.H. Xia a, Z.J. Wang b

a School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore
b Department of Aerospace Engineering, College of Engineering, Iowa State University, Ames, IA 50011, USA

Received 13 July 2005; received in revised form 7 November 2005; accepted 8 November 2005
Available online 27 December 2005
Abstract

This paper presents the development and validation of a new parallel unstructured multi-grid preconditioned implicit
method for the simulation of three-dimensional (3D) unsteady compressible flows using a so-called immersed membrane
method (IMM) [G.H. Xia, Y. Zhao, J.H. Yeo, An immersed membrane method for simulation of fluid–structure interac-
tion in bio-fluid flows, in: 1st International BioEngineering Conference (IBEC 2004), 08–10 September 2004]. The novel
feature of the method presented is that it employs a unique combination of a parallel multi-grid scheme with low-
Mach-number preconditioning and the IMM so that 3D unsteady low-Mach-number flows with arbitrarily moving objects
can be efficiently simulated.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Fluid–structure interaction; Parallel; Multigrid; Preconditioning; Immersed membrane method; Finite volume scheme; Implicit
dual time stepping scheme; Higher-order TVD scheme
1. Introduction

The simulation of fluid flows with arbitrarily moving solid bodies is one of the challenges in computational
fluid dynamics (CFD). The development of accurate, robust and efficient methods that can tackle this problem
would be very useful for many practical applications. In recent years significant research efforts have been
devoted to the development of numerical models for studying moving boundary problems based on the finite
volume and finite element methods. Luo and Pedley [1–3] performed a time-dependent simulation of a coupled
flow-membrane problem, using the Arbitrary Lagrangian Eulerian (ALE) method together with a spine
scheme to treat a compliant wall moving in its wall normal direction in a channel. Zhao et al. [4,5] have also
proposed a new dynamic mesh scheme to simulate an arbitrarily moving elastic wall in a similar channel based
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.11.012

* Corresponding author. Tel.: +65 6790 4545; fax: +792 4062.
E-mail address: myzhao@ntu.edu.sg (Y. Zhao).

mailto:myzhao@ntu.edu.sg

662 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
on the ALE. Gaitonde [6,7] developed a moving mesh method for the computation of compressible viscous
flow past moving aerofoils. A sequence of body conforming grids and the corresponding grid speeds were
required, where the inner and outer boundaries of the grids moved independently. The required grids and their
velocities were found by using a transfinite interpolation technique. Mendes and Branco [8] analyzed the inter-
action of fluid-rigid body by a finite element procedure that incorporates the ALE method into a two-step pro-
jection scheme and the flow was assumed to be 2D, incompressible and viscous. Anju et al. [9] presented a
finite element analysis of a interaction problem by the ALE method and a fractional step Navier–Stokes sol-
ver. The method was applied to analyze flow around an oscillating rectangular cylinder. It is interesting to
note that in this study the whole calculation domain was divided into several sub-domains to improve
computational efficiency. In the inner domain the mesh was moved and the calculation was based on the
ALE method. The outer-most domain was an Eulerian domain with fixed grid. The intermediate domain
was designated as a transition region. Heil [10] studied a three-dimensional steady Stokes flow in an elastic
tube using the ALE, which was described by non-linear shell equations. Only the final equilibrium state
was presented because the flow was steady. Lefrancois et al. [11] developed a finite element model for studying
fluid–structure interaction and an ALE formulation was used to model the compressible inviscid flow with
moving boundaries with large deformation. It is observed that all the works reported have mostly relied on
the costly grid regeneration method to capture large movements of the boundary in the flow field, whist
the less costly dynamic grid method is believed to be unable to handle large boundary and mesh deformations.

An alternative to the ALE is the Eulerian method, where the computational mesh is fixed without deforma-
tion or movement, thus fluid motion can be conveniently described with respect to this Eulerian frame. The
group of Eulerian methods includes Immersed Boundary (IB) method and Fictitious Domain (FD) method
etc. Peskin et al. [12] proposed the IB method to simulate the motion of human hearts and heart valves. At
its early stage, the IB method could not consider the inertial effect of the structure because the dynamic equation
of the structure was not used to calculate its movement. In their recent work [13], Zhu and Peskin did consider
the inertial effect by taking the structure�s (a soap film) mass into account. They accomplished this by employing
an inhomogeneous density field in the unified momentum equation with different densities for the fluid domain
and the structure positions. The philosophy of the IB method is to treat immersed elastic structures as parts of
the fluid domain on which additional forces, arising from elastic stresses of the immersed structures, are applied.
The governing equations for the fluid domain are solved on a Cartesian mesh, which is not modified by the pres-
ence of the immersed elastic structure. The immersed boundary is tracked in a Lagrangian manner, by following
a collection of representative material points. The spatial configuration of these points is used to compute the
elastic forces, which are then passed to nearby mesh points of the fluid domain through a delta function. Fluid
velocity is updated under the influence of these forces, and the latest updated velocity is used to calculate the
movement of the structure. The IB method has been applied to a wide range of problems, mostly in biofluid
dynamics, including blood flow in the human heart [14], platelet aggregation during blood clotting [15,16]
and the motion of flexible pulp fibers [17]. Glowinski et al. [18,19] studied a Lagrange multiplier based Fictitious
Domain (FD) method for numerical solutions of three-dimensional elliptic problems with Dirichlet boundary
conditions and also for the Navier–Stokes equations modeling incompressible viscous flows. This method is
based on the imposition of velocity constraints associated with moving internal boundaries by means of a
Lagrange multiplier. The FD method allows the coupling of domains with dissimilar element distributions
and/or interpolation order by applying Lagrange multipliers on a fictitious boundary representing the immersed
structure [20,21]. The main advantage of the FD method is that different mathematical descriptions for the fluid
and structure can be maintained, allowing convenient classical formulations (Lagrangian or Eulerian formula-
tions) for each of these subsystems. Moreover, the fluid mesh is not altered or interrupted by the presence of the
immersed domain, therefore preserving its original quality [22–26]. Generally speaking, Eulerian methods are
relatively less-complicated techniques by using fixed fluid meshes, which reduce the computational costs for
mesh treatment. However, the above Eulerian methods do not allow for �jump� conditions between two sides
of immersed thin structures, because the flow conditions on structural boundaries are smoothed over several
mesh cells across or near the immersed structures due to the fact that the structures are considered as internal
conditions in the flow field and source terms are distributed to nearby fluid nodes for constraining the flow field.
Recently Zhao et al. [27] has also developed a so-called Immersed Object Method (IOM) with overlapping
unstructured grids for general Fluid–Structure-Interaction (FSI) simulation. The main idea of the method is

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 663
that the fluid covered by immersed objects is assumed to be frozen and moves like a solid, whose kinematics is
enforced by adding source terms to the momentum equations. Overlapping grids are wrapped around the
objects and the boundary conditions for the overlapping grids are transferred from the Eulerian grid to the over-
lapping grids for further computation on the overlapping grids, in order to capture the fine details of boundary
lays over the moving objects. This method is found to be efficient to simulate moving objects, but it cannot han-
dle thin structures, such as membranes.

Liu et al. [28] have developed a multigrid method using the dual time stepping scheme on structured grids
for the computation of unsteady incompressible viscous flows, while Lin [29] has attempted the unstructured
multigrid (MG) method for calculating unsteady inviscid flows. In Tai and Zhao�s study [30], they successfully
extended the higher-order characteristics-based finite-volume scheme for unstructured grids [31] to simulate
unsteady incompressible viscous flows by introducing an unstructured multigrid method, which we will extend
for unsteady compressible flow simulation in our current study.

One difficulty with compressible Navier–Stokes solvers is slow convergence rates and even unstable solu-
tions for low Mach number flows. This difficulty can be traced to a disparity between the acoustic and con-
vective speeds [32–41], and can be addressed by a preconditioning algorithm. Previous work in this area has
been reported by Venkateswaran and Merkle [35,38], Turkel [39], Van Leer et al. [40], Weiss and Smith [41].
The applications of the preconditioning methods have been found in the computation of steady flows without
considering arbitrarily moving objects in the flow field.

Tai and Zhao [42] parallelized an incompressible Navier–Stokes solver based on the artificial compressibil-
ity approach and higher-order characteristics-based finite volume scheme for unstructured non-moving grids
using a multigrid domain decomposition approach (MG-DD) and the single program multiple data (SPMD)
parallel strategy with message passing interface (MPI). They developed a communication scheme for an over-
lapping partition structure in order to obtain continuity of results in the whole domain. Singh and Zhao [43]
developed a parallel dynamic unstructured moving grid Direct Monte Carlo Simulation (DMCS) of molecular
gas dynamics and the associated thin film deposition. It is envisaged that the combination of the ALE
approach and the parallel unstructured MG, as well as the preconditioning, may not be efficient enough
and easy to be implemented into computer codes, compared with the combination with an Eulerian method
for handling moving objects and the resulting unsteady 3D flows, not to mention the difficulty for the ALE to
simulate large mesh deformations.

Therefore in this study, we aim to develop a parallel unstructured multi-grid preconditioned compressible
Navier–Stokes solver implementing the IMM [46] to calculate 3D unsteady low-Mach-number flows with
arbitrarily moving objects. The developed solver makes it possible to include moving objects in the flow fields
with complexities that existing methods cannot easily handle because it does not requires complicated inter-
polation of boundary conditions along surface normal direction. Unlike the aforementioned Eulerian meth-
ods, the new method does not smooth fluid forces across the immersed structure and discontinuities in
pressure and gradients of flow properties can be accurately accounted for as a result.

The paper is structured as follows. In Section 2 which is the next section, the finite-volume preconditioned
compressible flow solver on unstructured grids is described. In Section 3, a brief description of our parallel and
multigrid implementation is presented. This is followed by a detailed description of the IMM algorithm in Sec-
tion 4. In Section 5, a grid convergence study is carried out for flows induced by both a steadily rotating rigid
sphere and an oscillating sphere to establish the order of accuracy of the method and demonstrate the capa-
bility of the method for handling moving objects. The method is then validated by applying it to two test cases.
The first one is viscous flow past a circular cylinder. The second case is viscous flow past an immersed fixed
membrane in a 3D square channel. Finally, several concluding remarks are drawn in Section 6.

2. Governing equations and numerical methods

2.1. Governing equations

The Navier–Stokes equations for three-dimensional compressible unsteady flows can be given in vector
form explicitly expressing the conservation laws of mass, momentum and energy. We also introduce, in the
equations, pseudo-time terms to provide pseudo-time marching for their numerical solutions:

664 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
C1
oW p

os
þ oW c

ot
þr �~F i ¼ r �~F v ð2:1Þ
where
W c ¼

q

qu

qv

qw

qet

26666664

37777775 ð2:2Þ

W p ¼

p

u

v

w

T 0

26666664

37777775 ð2:3Þ

~F i ¼

q~U

qu~U þ p~i

qv~U þ p~j

qw~U þ p~k

qH~U

26666664

37777775 ð2:4Þ

~F v ¼

0

~sx

~sy

~sz

ð��s � ~U �~qÞ

26666664

37777775 ð2:5Þ
s is the pseudo-time and C1 is the preconditioning matrix in the pseudo-time terms for low-Mach-number
flows which is defined in the appendix. Wc and Wp are the vectors of conservative and primitive dependent
variables, respectively; ~F i and ~F v are the inviscid convective flux and viscous flux vectors. Furthermore we
have the following formulas:
~U ¼ u~iþ v~jþ w~k

s
¼ ¼~sx~iþ~sy~jþ~sz

~k

~si ¼ six~iþ siy~jþ siz
~k

sij ¼ l
oui

oxj
þ ouj

oxi
� 2

3
dijr � ~U

� �
~q ¼ qx

~iþ qy
~jþ qz

~k

T 0 ¼ p=q ¼ c2=c
~i; ~j and~k are the three unit vectors in three Cartesian directions, six,siy and siz the viscous stresses and q the
heat transfer flux vector, defined by
~q ¼ �jrT ¼ � lCp

Pr
rT
here T the temperature and Pr the Prandtl number:
Pr ¼ lCp

j

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 665
The above equations are non-dimensionalised and the non-dimensional variables used are defined as follows:
ðx�; y�; z�Þ ¼ x
L
;
y
L
;

z
L

� �
; ðu�; v�;w�Þ ¼ u

U1
;

v
U1

;
w

U1

� �
t� ¼ t

L=U1
; p� ¼ p � pin

q1ðU1Þ
2

; e�t ¼
et

ðU1Þ2
; H � ¼ H

ðU1Þ2

q� ¼ q
q1

; T � ¼ T

ðU1Þ2=Cv

; Re ¼ q1U1L
l

q� ¼ � c
Pr Re

r�T �; c ¼ Cp

Cv
; T � ¼ p�

q�ðc� 1Þ ¼ T 0=ðc� 1Þ
where pin is the inlet or reference pressure. L is the characteristic length of the computed model, U1 is the inflow
velocity and l is the dynamic viscosity of the flow. The variables with a superscript * here are non-dimensional
parameters and the asterisk sign will be dropped in subsequent equations for sake of convenience. It should be
noted that after non-dimensionalization, we will use T 0 in Wp and both T* and T 0 in other calculations. We sub-
tract a constant value (the reference pressure) from the pressure term to control the round-off errors for low
speed flows, which is found to be critical in controlling computational errors in the momentum equations for
low-speed compressible flows. The use of gauge pressure is a common treatment for incompressible solvers be-
cause only pressure gradients are needed for all calculations. For compressible solvers, the absolute value of
pressure must be used when dealing with the energy equation and state equation of gas. But when we use
non-dimensional absolute pressure at low Mach numbers, it becomes extremely large although the pressure gra-
dients in momentum equations are small. The use of gauge pressure can avoid performing the addition and sub-
traction operations between two extraordinarily large values of non-dimensional absolute pressures. In our
experience, the result obtained with gauge pressure is more accurate than without using it. And the relative error
can be up to 4–5% of the result.

2.2. Numerical methods

The 3D equations (2.1) are transformed into an integral form and discretized on an unstructured grid. A
cell-vertex finite volume scheme is adopted here. For every vertex, as shown in Fig. 1, a control volume is
constructed using the median duals of the tetrahedral cells. Spatial discretization is performed by using the
integral form of the conservation equations over the control volume surrounding node P:
P

A

B

C

O
1

2

3 a

b

c

Fig. 1. Construction of control volume within a tetrahedron for a node P.

666 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
Z Z Z
cv

oQ01
os

dV þ
Z Z Z

cv

oW c

ot
dV þ

Z Z Z
cv

r �~F i dV �
Z Z Z

cv

r �~F v dV ¼ 0 ð2:6Þ
Noted that a new variable Q01 has arisen as
oQ0

1

os ¼ C1
oW p

os , and the Jacobian C1 ¼
oQ0

1

oW p
. So that,

oQ0
1

os ¼
oQ0

1

oW p

oW p

os ¼
C1

oW p

os .
The convective term is transformed into a summation:
Z Z Z

cv

r �~F i dV ¼
Z

Scv

~F i �~n dS ¼
Xnbseg

k¼1

½ð~F iÞij �~nDS�k ð2:7Þ
where �nbseg� is the number of the edges associated with node P, ð~F iÞkij is the inviscid flux through the part of
control volume surface associated with edge k, and~n is the unit normal vector of the control volume surface.
Finally, DSk is a part of the control volume surface associated with edge k. Therefore, all the fluxes are calculated
for the edges and then collected at the two end of each edge for updating of flow variables in time marching. The
viscous term is calculated using a cell-based method:
Z Z Z

cv

r �~F v dV ¼
Z

Scv

~F v �~ndS ¼
Xncell

i¼1

½~F v �~nDSc�i ð2:8Þ
where �ncell� is the number of elements associated with node P and DSci is the part of control volume surface in
cell i. By using the following relation:
Z

Scv

~dS ¼ 0
the total vector surface of the control volume in a cell i becomes
~nDSci ¼
1

3
ð~nDSpiÞ
Thus, the calculation of viscous terms can be simplified as
Xncell

i¼1

½~F v �~nDSc�i ¼
1

3

Xncell

i¼1

½~F v �~nDSp�i ð2:9Þ
where ~nDSpi is the surface vector of the face opposite node P of the tetrahedron under consideration. Here
the ð~F vÞi is calculated at the center of the tetrahedron with a node P, and can be obtained by using
Green�s Theorem based on the variables at the four vertices of the tetrahedron. Similar to the Galerkin
type of formulation, the gradient of a flow variable / at the center of a tetrahedron is evaluated as
follows:
grad/c ¼ �
P4

i¼1/i9Si

27V
¼ � 1

3

P4
i¼1/iSi

V
ð2:10Þ
where /i is the flow variable at a vertex i of the tetrahedron and Si is the surface area that is opposite to node i, V

is the volume of the tetrahedron. Gradients at the vertices are obtained by a volume averaging of the gradients
at the center of cells associated with the vertex under consideration.

In this work, a high-order Roe�s TVD scheme for compressible flow for arbitrary unstructured 3D grids has
been adopted. Because of the preconditioning matrix C1, the inviscid fluxes, ð~F iÞkij, through the face k is now
reformulated as
ð~F iÞkij �
1

2
ðð~F iÞi þ ð~F iÞjÞk �

1

2

o~F i

oQ01

�����
�����
k

dQ01
� �

k

¼ 1

2
ðð~F iÞi þ ð~F iÞjÞk �

1

2

o~F i

oW p

oW p

oQ01

�����
�����
k

oQ01
oW p

� �
k

ððW pÞj � ðW pÞiÞk ð2:11Þ

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 667
Note that we have retained the variable, Q01, in computing this flux. Defining the Jacobian in the normal direc-
tion as
ðHpÞk ¼
o~F i

oW p

 !
k

And using the previously defined Jacobian C1 ¼
oQ0

1

oW p
, then the above expression becomes
ð~F iÞkij �
1

2
ðð~F iÞi þ ð~F iÞjÞk �

1

2
H pC

�1
1

�� ��
k
C1kððW pÞj � ðW pÞiÞk
Drop the subscript k on the flux vector and the Jacobian with the assumption that the fluxes and Jacobians all
correspond to conditions in the normal direction on the given control volume surface. And after some simple
algebraic derivations we have
ð~F iÞ�ij
1

2
ðð~F iÞi þ ð~F iÞjÞ �

1

2
C1 C�1

1 H p

�� ��ððW pÞj � ðW pÞiÞ ð2:12Þ
Combined with the third-order MUSCL interpolation, it can produce accurate and stable solution on
unstructured grids. The left and right state vectors WL and WR at a control volume surface are evaluated using
a nominally third-order upwind-biased interpolation scheme. If the left and right state vectors are set to Wi

and Wj (i and j corresponding to the two end nodes of an edge), it is a first-order upwind scheme, which
are shown as follows:
W L ¼ W i þ
1

4
ð1� jÞD�i þ ð1þ jÞDþi
	

ð2:13:aÞ

W R ¼ W j �
1

4
ð1� jÞDþj þ ð1þ jÞD�j
h i

ð2:13:bÞ
where
Dþi ¼ D�j ¼ W j � W i

D�i ¼ W i � W i�1 ¼ 2i~j � rW i � ðW j � W iÞ ¼ 2i~j � rW i � Dþi

Dþj ¼ W jþ1 � W j ¼ 2i~j � rW j � ðW j � W iÞ ¼ 2i~j � rW j � D�j
Therefore, substituting the above equations into Eqs. (2.13.a) and (2.13.b), the final equations based on
upwind-biased interpolation scheme is shown as follows:
W L ¼ W i þ
1

2
ð1� jÞi~j � rW i þ jDþi
	

ð2:14:aÞ

W R ¼ W j �
1

2
ð1� jÞi~j � rW j þ jD�j

h i
ð2:14:bÞ
where j is set to 1/3, which corresponds to a nominally third-order accuracy. i~j is the vector representing the
edge, which points from node P to its neighbouring node under consideration. The gradients of W at i and j

are calculated by volume-averaging the gradients of the cells that surround i and j.
Finally, for a given node P, the spatially discretized Eq. (2.6) form a system of coupled ordinary differential

equations, which can be reformulated as
oQ01
os

DV cv þ
oW c

ot
DV cv ¼ �

1

2

Xnbseg

k¼1

ðð~F iÞi þ ð~F iÞjÞ � C1 C�1
1 H p

�� ��ððW pÞj � ðW pÞiÞ
h i

k
�~nDS � 1

3

Xncell

i¼1

~F v �~nDSP

	

i

()
¼ �R ð2:15Þ
where R represents the residual which includes the convective and diffusive fluxes and DVcv is the control volume
of node P. the over-bar in Eq. (2.15) denotes the cell-averaging value.

668 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
An implicit scheme is adopted for Eq. (2.15) and the time-dependent term is discretized using a second-
order-accurate backward differencing scheme,
oQ01
os

DV cv ¼ �Rnþ1 � 1:5DV nþ1
cv W nþ1

c � 2:0DV n
cvW n

c þ 0:5DV n�1
cv W n�1

c

Dt

� �
¼ eRnþ1 ð2:16Þ
where the superscript (n + 1) denotes the physical time level (n + 1) Dt and all the variables are evaluated at
this time level, eRðW nþ1

p Þis the new modified residual which contains both the time derivative and flux vectors.
The derivative with respect to a pseudo-time s is discretized as
DV nþ1
cv C1

W nþ1;mþ1
p � W nþ1;m

p

ds
¼ eRnþ1;m ð2:17Þ
whose solution is sought by marching to a pseudo steady state in s. Here m and (m + 1) denote the initial and
final pseudo-time levels. Once the artificial steady state is reached, the derivative of Wp with respect to s be-
comes zero, and the solution satisfies eRnþ1 ¼ 0. Hence, the original unsteady Navier–Stokes equations are fully
recovered. Therefore, instead of solving the equations in each time step in the physical time domain (t), the
problem is transformed into a sequence of steady-state computations in the artificial time domain (s). Eq.
(2.17) can be integrated in pseudo-time by an explicit five-stage Runge–Kutta scheme. However, the pseu-
do-time step size may be severely restricted if the physical time step size is very small. Hence, a fully implicit
dual time stepping is adopted here.

A Taylor series expansion is performed for the residual in Eq. (2.17) with respect to the pseudo-time for
node i,
eRmþ1

i ¼ eRm

i þ
oeRi

oðW pÞi
DðW pÞi þ

Xnbseg

j¼1

oeRi

oðW pÞj
DðW pÞj ð2:18Þ
where �nbseg� is the number of edges connected to i, which is also equal to the number of neighboring points
connected to point i through the edges. An approximate flux function is introduced here to simplify the im-
plicit time stepping calculation. The total flux (including both convective and viscous fluxes) across a control
volume surface associated with a certain edge ij can be approximated as
F ij �
1

2
½ð~F iÞi �~nþ ð~F iÞj �~n� jkijjððW pÞj � ðW pÞiÞ�
where kij is the spectral radius based on the preconditioned system which is associated with edge ij, and is
given in the appendix. Then in all of the R(W) terms (Eq. (2.15)), the Taylor series expansions of the fluxes
are
oRi

oðW pÞi
¼
Xnbseg

j¼1

1

2

oð~F iÞij
oðW pÞi

þ jkijj
" #

and
oRi

oðW pÞj
¼
Xnbseg

i¼1

1

2

oð~F iÞij
oðW pÞj

� jkijj
" #
And for the physical time-dependent terms, we have
ðW cÞmþ1
i ¼ ðW cÞmi þ

oW c

oW p
DðW pÞi
After combining all the residuals terms at every node in the flow field into a vector and dropping the third term
of the right-hand side of Eq. (2.18), we have
eRnþ1;mþ1

i ¼ eRnþ1;m

i � oRi

oðW pÞi
DðW pÞi � 1:5

DV nþ1
cv

Dt
oW c

oW p
DðW pÞi

¼ eRnþ1;m

i �
Xnbseg

j¼1

ðH p;jÞDðW pÞi � 1:5
DV nþ1

cv

Dt
MDðW pÞi
where H p;j ¼ 1
2

oð~F iÞij
oðW pÞi

þ jkijj
h i

;M ¼ oW c
oW p

. And the whole-field equivalent of Eq. (2.16) can then be re-written
as

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 669
I þ 1:5Ds
Dt

C�1
1 M þ

Xnbseg

j¼1

Ds

DV nþ1
cv

C�1
1 H p;j

� � !
W nþ1;mþ1

p � W nþ1;m
p

Ds
DV nþ1

cv

¼ C�1
1 � 1:5W nþ1;m

c DV nþ1
cv � 2:0W n

cDV n
cv þ 0:5W n�1

c DV n�1
cv

Dt
� Rnþ1;m

� �
ð2:19Þ
that is,
eA W nþ1;mþ1
p � W nþ1;m

p

Ds
DV nþ1

cv ¼ C�1
1
eRnþ1;m
thus,
W nþ1;mþ1
p � W nþ1;m

p

Ds
DV nþ1

cv ¼
eeRnþ1;m
where
eeRnþ1;m

¼ eA�1
C�1

1
eRnþ1;m

and eA ¼ I þ 1:5Ds
Dt

C�1
1 M þ

Xnbseg

j¼1

Ds

DV nþ1
cv

C�1
1 H p;j

� �

Therefore,
eRnþ1;m ¼ �Rnþ1;m � K
1:5DSnþ1

cv W nþ1;m � 2:0DSn
cvW n þ 0:5DSn�1

cv W n�1

Dt

� �

Further approximation can be introduced in order to achieve matrix-free computation. If we employ point

implicit treatment to the preceding equations, then only the diagonal terms in eA are used in the pseudo-time
stepping. As a result, the equation for every node can now be written as
W nþ1;mþ1
p � W nþ1;m

p

Ds
DV nþ1

cv ¼
eeRnþ1;m

ð2:20Þ
where
eeRnþ1;m

i ¼ eA�1

ii C�1
1
eRnþ1;m

i

and
eA�1

ii ¼ diag I þ 1:5Ds
Dt

C�1
1 M þ

Xnbseg

j¼1

Ds

DV nþ1
cv

C�1
1 H p;j

� � !�1
24 35
Pseudo-time stepping is then performed on Eq. (2.20). For a five-stage scheme, the stage coefficients are
a1 ¼ 1=4; a2 ¼ 1=6; a3 ¼ 3=8; a4 ¼ 1=2; a5 ¼ 1
To speed up the convergence rate, an implicit residual smoothing scheme developed for unstructured grids is
employed. The smoothing equation for a vertex k can be expressed as follows:
Rk ¼ Rk þ er2Rk ð2:21Þ

where R is the original residual, R is smoothed residual and e is the smoothing coefficient, which can be defined
as
e ¼ max
1

4

CFL

CFL�

� �2

� 1

" #
; 0

()
ð2:22Þ
where CFL* is the maximum CFL number of the basic scheme. The solution to the above equations can be
obtained on an unstructured grid by using the Jacobi iterative method as follows:

670 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
R
ðmÞ
k ¼ Rð0Þk þ e

PnumnodðkÞ
i¼1 R

ðm�1;mÞ
i

1þ e � numnodðkÞ ð2:23Þ
where numnod(k) is the number of neighboring nodes of vertex k.

2.3. Boundary treatment

The far field calculations are based on characteristic variables (Reimann invariants). Thus at inflow the
incoming variables corresponding to positive eigenvalues are specified while the outgoing variables corre-
sponding to negative eigenvalues are extrapolated. Once we change the time-dependent equations we also
change the characteristics of the system (though not the signs of the eigenvalues). Hence, it is also neces-
sary to modify the boundary conditions for the preconditioned system. Here the flux at a boundary is
defined as
~F i �~nSk ¼ ~F
þ
i þ~F

�
i

� �
� DSk
Here, ~F
�
i has been redefined as ~F

�
i ¼ X Hp ;RK

�X Hp ;LW p.
Where K� ¼ ki�jkij

2
, and ki represents the eigenvalue of Hp (see Appendix for details of ki). X Hp ;R and X Hp ;L are

the right and left eigenvectors of Hp (see Appendix).
We first calculate
z ¼ X Hp ;LW p ¼

ð1� cÞnxp=ðcqÞ þ nzvþ nxT 0 � nyw

ð1� cÞnyp=ðcqÞ � nzuþ nxwþ nyT 0

ð1� cÞnzp=ðcqÞ þ nyu� nxvþ nzT 0

p þ nxqðk1 � bUÞuþ nyqðk1 � bUÞvþ nzqðk1 � bUÞw
p þ nxqðk2 � bUÞuþ nyqðk2 � bUÞvþ nzqðk2 � bUÞw

0BBBBBB@

1CCCCCCA ð2:24Þ
And then
~F
�
i ¼ X Hp ;RK

�X Hp ;LW p ¼ ðX Hp ;RK
�Þz

¼

ðbU � k2Þk�1 z4 þ ðk1 � bUÞk�2 z5

� �
=S

nyk
�
0 z3 � nzk

�
0 z2 þ nxk

�
1 z4 � nxk

�
2 z5

� �
=ðqSÞ

nzk
�
0 z1 � nxk

�
0 z3 þ nyk

�
1 z4 � n�y k�2 z5

� �
=ðqSÞ

nxk
�
0 z2 � nyk

�
0 z1 þ nzk

�
1 z4 � nzk

�
2 z5

� �
=ðqSÞ

nxk
�
0 z1 þ nyk

�
0 z2 þ nzk

�
0 z3 þ ðc� 1Þ ðbU � k2Þk�1 z4 þ ðk1 � bUÞk�2 z5

� �
=ðcqSÞ

0BBBBBBBB@

1CCCCCCCCA
ð2:25Þ

ffiq

where S ¼ U 2ðb� 1Þ2 þ 4bc2.

3. The parallel unstructured multigrid method

This work focuses on examining the one-level method of parallelization strategies in the geometric domain
decomposition technique, which employs MPI [44] as the communication library. And the multigrid domain
decomposition (MG-DD) approach [42] is adopted for the multigrid parallelization. METIS [45] is used to
decompose the flow domain into a set of S sub-domains that may be allocated to a set of P processors.
The nodes and elements that are allocated uniquely to a processor are referred to as core mesh components
in this work and each processor calculates the flow field variables and nodal gradients for it. Nodes and ele-
ments are separately renumbered as a result of the use of the SPMD (Single Programme Multiple Data)
approach, i.e., each partition is treated as a separate flow domain and copies of the same code are used for
all these domains for calculations. Each sub-domain is enclosed by a layer of nodes and elements, which over-
lap the neighboring sub-domains along the inter-partition boundaries and provide the necessary boundary
conditions obtained from its neighbors. These outer most nodes in the layer are called ghost nodes because

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 671
they lie in the neighboring domains and their flow variables are obtained by transferring the flow conditions
from their corresponding images (core nodes in the neighbors) to them. Communication between these core

and ghost nodes is based on MPI and proper synchronization between the computations in neighboring par-
titions ensures that the necessary boundary conditions are correctly exchanged between them. An algorithm
developed in [42] is employed to identify the ghost nodes, overlapping elements and to write the individual grid
files with local numbering for each partition. Basically, it consists of four essential steps:

(1) identify ghost nodes and overlapping elements;
(2) generate individual grid files with local numbering for every partition;
(3) establish data structures for communication between core and ghost nodes;
(4) generate a script file to integrate all the result files after the parallel simulation has been performed.

The main concept of this algorithm is that those elements along the inter-processor boundaries with nodes
having different partition numbers are considered as overlapping elements which are cut through by partition
lines. And those nodes that formed these elements are a mixture of core and ghost nodes with the outer most
nodes being ghost nodes and inner ones core nodes. Basically, a ghost node of a partition is the mirror image
of a corresponding core node in a neighboring partition.

Both speed-up and efficiency are commonly used to measure the performance of a parallel code. The run
time of the original serial code is used as a measure of run time on one processor. In this context, run time
can be defined as the time that has elapsed from the moment when the first process actually begins execution
of the program to the moment when the last process executes its last statement. In this study, run time or total
simulation time starts from the moment before mesh partitioning for either single grid or MG, identifying
ghost nodes and writing local grid files for different partitions to the time after writing all the results to the
respective files. Both CPU time and wall-clock time can be used to record the total simulation time. The main
difference is that CPU time is the recorded time when only the processor performs a calculation, whereas clock
time is almost similar to CPU time but it includes idling time when the processor idles while waiting for other
processors to communicate with. Thus wall-clock time is used to represent the total simulation time in this
work since it includes the idling time, computation time and communication time, which is the true represen-
tation of the total simulation time.

The basic idea of the multigrid method is to carry out early iterations on a fine grid and then progressively
transfer these flow field variables and residuals to a series of coarser grids. On the coarser grids, the low fre-
quency errors become high frequency ones and they can be easily eliminated by a time stepping scheme. The
flow equations are then solved on the coarser grids and the corrections are then interpolated back to the fine
grid. The process is repeated over a sufficient number of times until satisfactory convergence on the fine grid is
achieved. For ease of implementation, the non-nested mesh method using independently generated non-nested
(or overset) coarse meshes is adopted [42]. Two different cycle strategies have been investigated in the present
work, which are V-cycle and W-cycle. The initial solution and residuals on the coarse grid (h + 1) are trans-
ferred from the fine grid (h) using volume-weighted transfer operators [42].
W ð0Þ
hþ1 ¼ T hþ1

h W h ð3:1ÞeeR ð0Þhþ1 ¼ Qhþ1
h
eeRðW hÞ ð3:2Þ
where W ð0Þ
hþ1 and

eeR ð0Þhþ1 are the initial coarse-grid flow field values and residuals, respectively, which are transferred
from the fine grid. Wh and

eeRðW hÞ are the fine-grid flow field variables and residual. T hþ1
h and Qhþ1

h are the solution
and residual transfer operators, based on volume-weighted averaging, the later having the property of conserving
the fine-grid residuals during transfer.

In order to drive the coarser grid solution using the fine grid residual, a forcing function is calculated at the
first stage of the implicit Runge–Kutta time stepping scheme and subsequently added to the residual on the
coarse grid. The forcing function on the coarse grid is
P hþ1 ¼ eeR ð0Þhþ1 �
eeRðW ð0Þ

hþ1Þ ð3:3Þ

Fig. 2. Fine grid partitions to infer the coarse grid partitions [42].

672 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
It should be noted that on coarse grids, time-dependent terms in the residual containing W at n and n � 1 time
levels are not included for ease of calculation. Instead, they are only included in the fine-grid residual and di-
rectly transferred to the coarse grids.

After calculating the variables on the coarsest grid, the corrections are evaluated and interpolated back
level-by-level to the finest grid. The correction is the difference between the newly computed value on the coar-
ser grid, and the initial value that was transferred from the finer grid. This correction is transferred to the finer
grid and added to the solution on that grid, i.e.,
W þ
h ¼ W h þ Ih

hþ1 W þ
hþ1 � W ð0Þ

hþ1

� �
ð3:4Þ
where Ih
hþ1 is an interpolation operator from the coarse grid to the fine grid and W þ

h is the updated solution. To
improve efficiency for the simulation of viscous flows, the viscous terms are only evaluated on the fine grid but
not evaluated on the coarser grids. Since the coarser grids are only used to cancel the dominating low fre-
quency errors, this treatment does not affect the accuracy of the solution. The upwind-biased interpolation
scheme is also set to first-order at the coarser levels.

The MG-DD approach is adopted in this study. This means that the non-nested multi-grids are indepen-
dently generated first. Then domain decomposition of the finest grid is performed, which is followed by
decomposition of the various coarse levels of grids guided by the finer grid partitions. This is achieved by using
the fine grid partitions to infer the coarse level partitions (i.e. the coarse grid is to inherit its partition from that
of its corresponding finest grid) and load balancing in the coarse mesh is reasonably well ensured. A two-level
multi-grid and two sub-domains are used to demonstrate the procedure of partitioning the coarse grid using
the fine grid. The main idea about this algorithm is that the fine grid is partitioned into two sub-domains
according to the algorithm developed for single grids. And both the maximum and minimum values in the
x and y-directions (Xmin, Xmax,Ymin and Ymax) of each partition for the fine grid are found. With these dimen-
sions, an imaginary bounding box enclosing the sub-domains is formed as shown in Fig. 2. The main purpose
of these bounding boxes is to identify the coarse nodes that fall within these boxes according to the fine grid
partitions including those nodes beyond the sub-domain boundaries. The algorithms depicted in [42] are used
to search for those actual coarse nodes that fall within a fine grid sub-domain and those nodes that fall beyond
the sub-domain boundary (i.e. shaded portion as depicted in Fig. 2) are ignored. After classifying the respec-
tive coarse nodes according to which partition they belong to, then the ghost nodes and overlapping elements
are identified using the algorithm depicted in Section 4. Individual grid files for the partitioned coarse grids
and data structures for communication are then generated.

4. The immersed membrane method (IMM)

When the immersed body in a flow field is a thin structure, it will cause discontinuous fluid conditions across
itself. Although velocity is continuous, the gradients of velocity, pressure, gradient of pressure and fluid stresses
are quite different on both sides of the thin structure. In this work, the IMM [46] is adopted, which treats thin

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 673
structures or the boundaries of normal structures (fluid occupies one side of the membrane only) as membranes.
This method uses an Eulerian background mesh for the fluid domain. When the membrane is present in the flow
field, it will intersect with the Eulerian mesh. Taking a 2D mesh cell N for example, it is cut by the membrane as
illustrated in Fig. 3. Fluid conditions on its nodes 1, 2 and 3 are discontinuous across the membrane. A set of
imaginary ghost nodes are introduced here to replace the original nodes when they are on different sides of the
membrane, i.e., nodes having discontinuous flow conditions. Considering node 1 on the left side of the mem-
brane, node 3 stores discontinuous flow variables since it is on the other side of the membrane. And a ghost
node g13 will be introduced to replace node 3 when the computation for node 1 involves conditions at node
3. In such a case, node 1 is called the real node and node 3 is called its corresponding ghost node g13. The nam-
ing convention for the ghost node is that it is prefixed with g for ghost and the first number denotes the real node
and the second number the corresponding ghost node. Under this naming convention, all the ghost nodes are
listed in Fig. 3. As described, the computations of convective fluxes are based on mesh edges. In the computa-
tion of convective flux along edge 23, for example, it involves the flow conditions at node 2 and 3. When the
convective flux is computed for node 2, ghost node g23 is introduced to replace node 3 in the computation.
Likewise, when the convective flux is calculated for node 3, ghost node g32 is introduced to replace node 2.
Computations of viscous fluxes and gradients are based on mesh cells. For example, in cell N, when the viscous
flux is computed for node 1, it involves fluid conditions of node 1, node 2 and node 3, and ghost node g13 is
introduced to replace node 3 in the computation. The fluid variables at ghost nodes are extrapolated linearly
from their corresponding real nodes based on the mesh edges which are intersected by the membrane. The
extrapolated values are called ghost-node values. The novel feature of this IMM is that extrapolation of flow
variables to ghost nodes is always along cell edges instead of the traditional membrane-normal direction [47,48].
As a result, every node can hold multiple ghost nodes and thus multiple ghost values since a node can be con-
nected by multiple edges, which is especially true for 3D unstructured grids. The selection of a particular ghost
value depends on which edge and node the computation is for. This feature is extremely efficient compared with
the wall/membrane-normal approach, because one does not need to: (1) construct wall normal lines; (2) find out
what cell faces they intersect with; (3) locate the exact positions of the interaction points; (4) interpolate the flow
conditions from nearby nodes to the intersection. These calculations are very complex for a 3D surface/mem-
brane intersecting with a 3D unstructured mesh.

Extrapolations of ghost-node velocities are illustrated in Fig. 4 (a). Taking node 2 as the real node, velocity
at ghost node g23 is extrapolated as follows:
ug23 � uI

u2 � uI

¼ � jr3Ij
jr2Ij

vg23 � vI

v2 � vI

¼ � jr3Ij
jr2Ij

ð4:1Þ
1 (g31)

2
(g32)

 3 (g23, g13)

Grid Cell N
Intersection
Points I

Immersed boundary

Fig. 3. Real nodes and ghost nodes of a 2D grid cell.

2
I

),v(uV ggg 232323

3 (g23)

),v(uV III

),v(uV 222

2

2p

I

23gp

3 (g23)

a

b

Fig. 4. (a) Velocity extrapolation for ghost node g23; (b) pressure extrapolation for ghost node g23.

674 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
Therefore,
Fig. 5.
corresp
ug23 ¼ �
jr3Ij
jr2Ij
� ðu2 � uIÞ þ uI

vg23 ¼ �
jr3Ij
jr2Ij
� ðv2 � vIÞ þ vI

ð4:2Þ
where uI and vI are velocity components of intersection point I, u2 and v2 are velocity components of real node
2, ug23 and vg23 are the velocity components of ghost node g23. ~V I ¼ uI

~iþ vI
~j used in the above extrapolations

is the velocity of the immersed membrane. In this work, the structure and fluid domains are coupled by enforc-
ing the velocity continuity condition as follows:
~V s ¼ ~V f ð4:3Þ
Real Node Ghost Node

A1

A2

A3

B

A

B3
B2

B
1

The treatment of the fluid nodes inside the immersed body. For dummy node A, it can possess up to 3 different ghost values
onding to fluid nodes A1, A2 and A3; for fluid node B, 3 dummy nodes B1, B2, B3 contribute to its flux computations.

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 675
And it is used to extrapolate fluid velocity to its corresponding ghost nodes. Therefore velocity continuity is
enforced through these extrapolations to couple the fluid and structure domains. The extrapolation of ghost-
node pressure is illustrated in Fig. 4 (b). Taking node 2 as real node, the ghost-node pressure of node g23 is
obtained by
pg23 ¼ p2 þ~r23 	 rp2 ð4:4Þ
where pg23 is the ghost-node pressure at node g23, $p2 is the pressure gradient at node 2,~r23 is the distance
vector pointing from node 2 to node 3.

This linear interpolation results in a second-order accurate scheme. It is noted that higher-order
MUSCL interpolation can also be applied here if higher order accuracy is required. On the other hand,
when the immersed body is an arbitrary object with a finite volume, the given concept and interpolation
method still apply, except that only the flow variables of the ghost nodes within the immersed body need
to be calculated because physically there are no fluid nodes inside the body. As depicted in Fig. 5, the
Eulerian fluid nodes inside the object are just bypassed in flow calculations. These inner nodes can be effi-
ciently searched for and identified by using an internal volume mesh within the object based on a quatree
search in every time step, while the surface mesh of the object is used to perform the interpolation and
extrapolation.
5. Results and discussion

5.1. Order of accuracy

To determine the overall accuracy of the method, we carry out a grid convergence study for a test problem,
which is a three-dimensional analogue of the problem used by Gilmanov et al. [48]. In this case, we simulate
flow induced by a sphere of radius R0, rotating at constant angular velocity X about the z-axis in a nearly
incompressible, viscous fluid with kinematic viscosity m. The Reynolds number for this flow is defined as
Re ¼ XR2

0=m. For Reynolds numbers in the range Re = 1–100, benchmark solutions for this problem have
been reported by Dennis et al. [49] who solved numerically the steady, axisymmetric Navier–Stokes equations
in polar coordinates using a vorticity-streamfunction formulation. In our studies, the Reynolds number is set
toRe = 100, and we solve the full three-dimensional and unsteady flow problem with the sphere starting to
rotate impulsively from quiescence relative to the stationary Cartesian grid.

The computational domain is a (10R0)3 cube with its center located at x = 5.0R0, y = 5.0R0 and z = 5.0R0.
Four uniformly spaced and successively finer mesh sizes with 203, 403, 803, and 1603 grid points, respectively,
are used for error analysis, and the finest-mesh solution is considered to be the �exact� solution. The surface of
the sphere is discretized with an unstructured triangular mesh consisting of 14,612 elements. The sphere is
placed at the center of the cubical domain and starts to rotate impulsively at t = 0 with constant rotational
velocity X about the z-axis. On all the grids the same physical time step (Dt = 0.01T) is employed in order
to concentrate on the spatial resolution of the method, as done in [48]). For all the grids, the simulation is
continued for one complete period, at the end of which the L1 and Lq norms of the u-velocity errors are
calculated as follows:
e1N ¼ max
i¼1;N3

uðNÞi � ue
i

��� ���; eq
N ¼

1

N 3

XN3

i¼1

uðNÞi � ue
i

��� ���q" #1=q
where e1N and eq
N are the infinity and qth error norms, uðNÞi is the u-velocity component at the ith node of the N3

mesh, and ue
i is the �exact� velocity field calculated on the 1603 grid. The results of the grid convergence study

are summarized in Fig. 6, which shows the variation of the L1, L1 and L2 norms of errors with grid spacing in
logarithmic coordinates. The lines with slope one and two are also given as reference. It is evident from Fig. 6
that the method is second order accurate. To further demonstrate the accuracy of our method, we also use the
Richardson estimation procedure to study the accuracy of the solver as in [48]. Let fN denote the numerical
solution on the N3 mesh. Assume that the discrete solution is a c-order approximation to its value fexact,
and the flow field is continuous and has no singularity points, then we have

Log|h|

L
og

|E
rr

or
|

-1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5
-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

L2 Error
L1 Error
Linfinity Error
Slope 1
Slope 2Grid III

Grid II

Grid I

Grid I : 20**3 nodes
Grid II : 40**3 nodes
Grid III : 80**3 nodes
"Exact Grid" : 160**3 nodes

Fig. 6. Convergence of the L1L1, L1 and L2 error norms for the velocity field induced by a rotating sphere. Slope 1 and Slope 2 are the
reference lines for 1-order and 2-order accuracy, respectively.

Table
Rate o

Norm

L1
L1

L2

676 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
c ¼
log f N � f N=2

�� ��= f N=2 � f N=4
�� ��� �

log 2
where i i denotes an error norm (L1, L1 or L2). If c � 2 the solution is second-order accurate. We apply the above
procedure for N = 160 (using solutions obtained on meshes 403, 803, and 1603) to calculate c for successively
refined meshes. And we use all three norms to compute the error and the results are summarized in Table 7.1,
which strongly supports our assertion about the second-order accuracy of our method.

Fig. 7 shows several snapshots of instantaneous streamlines on the plane at y = 2.5. To compare the result
quantitatively with those in [48,49], we compute the angle hs between the z-axis and the line that originates
from the center of the sphere and passes through the center of the toroidal vortex ring (see Fig. 8 for defini-
tion). In Table 7.2, we compare our hs with those reported in [48,49] and the agreement is very good.

5.2. Flow induced by an oscillating sphere in a closed cavity

The grid convergence study is also performed for the case where a solid oscillating sphere is immersed in a
fluid enclosed within a cube with solid walls. This is to demonstrate the capability of the method in handling
objects moving with large displacements. The sphere of diameter D = 1.0 units is placed initially at the center
of the cube of dimension 2 * 2 units and oscillates horizontally with a non-dimensional time period of 1.0 and
an amplitude of 0.25D. The oscillation is effected by moving the sphere as a rigid body with velocity given by
u ¼ 0:25p sinð2ptÞ; v ¼ w ¼ 0
The Reynolds number (based on the sphere diameter and maximum velocity) has been set to 20. The following
sequence of grid sizes is employed in performing the error analysis: 203, 403, 803 and 1603. And the result on
7.1
f convergence c calculated for different error norms

Grids

403, 803, 1603

1.82
2.84
2.15

Fig. 7. Instantaneous snapshots of streamlines at the y = 2.5 plane depicting the early stages of flow evolution toward steady state for
Re = 100. Time is measured from the start of the impulsive rotation and T is the rotation period of the sphere.

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 677
the 1603 mesh is taken to be the ‘‘exact’’ solution for this case. A small time step of Dt = 0.005 is chosen for all
these simulations in order to minimize the effect of temporal errors on the solution. The simulations are carried
out for one oscillation period and the velocity components at each grid point are recorded for all the meshes
under consideration at the end of the period. The instantaneous streamlines at the end of an oscillation cycle
(t = 1.0 T) are shown in Fig. 9. Fig. 10 presents the error norms for the three meshes (203, 403 and 803). As can
be noted, the convergence rates of errors in the simulations are close to the Slope 2 reference line, indicating
second-order-accuracy.

5.3. Parallel computation of flow past a circular cylinder

Flow past a circular cylinder is a classical benchmark problem, which has been the subject of many theo-
retical, experimental and computational investigations due to its simple geometry and its representative behav-
ior of general bluff body flows. Both low and high Reynolds numbers are used to demonstrate and examine the
performance, accuracy and robustness of the parallel-MG compressible solver with the implementation of

Fig. 8. The angle hs between the z-axis and the radius that passes through the centre of the toroidal vortex ring.

Table 7.2
Comparison of the measured [48,49] and calculated angle hs

Re hDennis hGilmanov hcalc e(%)

100 73.8 72.1 74.3 0.68 (with [49]), 3.05 (with [48])

Fig. 9. Instantaneous streamlines at t = 1.0T for flow induced by an oscillating sphere in a closed cube filled with compressible and viscous
fluid.

678 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
IMM algorithm for steady and unsteady flows. The computational domain and the immersed cylinder are
shown in Fig. 11. The parallel calculations are performed on the SGI Origin 3400 machine.

Three different grids are generated, which have 84,054, 122,202 and 182,536 nodes, respectively, and the
immersed cylinder surface is discretized using 33,578 triangular elements. All the parameters for the three sim-
ulation runs are kept exactly the same and the simulation is run until non-dimensional time, t = 150.0 for
Re = 200 with an inflow Mach number of 0.2. The computed value of lift coefficient, Cl, is used as a criterion
for convergence as shown in Fig. 12.

Log|h|

L
og

|E
rr

or
|

-1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

L2 Error
L1 Error
Linfinity Error
Slope 1
Slope 2

Grid III

Grid II

Grid I

Grid I : 20**3 nodes
Grid II : 40**3 nodes
Grid III : 80**3 nodes
"Exact Grid" : 160**3 nodes

Fig. 10. Convergence of the L1L1, L1 and L2 error norms for the velocity field of oscillating sphere in a closed cube. Slope 1 and Slope 2
are the reference lines for 1-order and 2-order accuracy, respectively.

X

Y

Z

x

-0950

095

X

Y Z

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690679
Comparing the results shown in Fig. 12, the peak value of Cl obtained using 84,054 nodes is 0.56 as
compared to 0.64 obtained by both grids of 122,202 and 182,536 nodes. And similarly, comparing the
results obtained by both 122,202 and 182,536 nodes, the value of Cl does not deviate from each other
significantly. Since there is not much difference in the results when the nodes density is increased from
122,202 to 182,536 nodes and to minimize computational time, a grid size of 122,202 nodes is employed
in the present work.
x

-4

-2

0

2

4

y

-15
-10

-5
0

5
z

0.0
0.5

y
-0950

095

z0
095

3D circular cylinder mesh with
33,578 triangular elements3D circular cylinder mesh

immersed into background
fluid mesh

The wake region behind the
cylinder is further refined

Fig. 119 The computational domain and the immersed cylinder for viscous flow past a circular cylinder.

CPU TimeR/R00 2 o 8 0 2 o 8 0 3 0 8 0 4 o 8 0 5 0 0 02 o - 5 2 o - 4 2 o - 3 2 o - 2 2 o - 1 2oo

R

MParalle-MGParallel-MG with Prec

Fig.

Time

L
if

t
co

ef
fi

ci
en

t
C

l5
0

10
0

15
0

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

 84,054 nodes
Fig. 12. Lift coefficients versus physical time using three different grids for flow over a circular cylinder (Parallel-MG, Preconditioned,
Re= 200, inflow Mach = 0.2).

680X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
5.3.1. Steady flow

The low Reynold number specified in this computation is 40.0 and the inflow Mach number is set to be a
very small value. Thus the flow can be considered as steady two-dimensional, which is started from quiescent
initial condition in the simulation. It is run using the low speed preconditioning with the parallel-MG method
as shown in the convergence history plot in Fig. 13. It is noted that for the same CPU time there is significant
improvement in residual reduction using the preconditioning, i.e., improvement in real convergence rate.

Fig. 14(a) and (b) show the streamline plots in the wake region obtained with and without the precondi-
tioning method, respectively. Based on qualitative comparison with the experimental result of Dyke et al.
[50], the wake formed behind the cylinder predicted by the preconditioning method has better agreement with
Dyke�s data than the non-preconditioning one. A quantitative comparison of the aspect ratio (separation
e = 4 0 . 0

= 0 8 0 1

132 Convergence histories for steady flow over a circularcylinder.

-1

-0
.8

-0
.6

-0
.4

-0
.2

122,202
nodes

182,536
nodes

Fig. 14. Streamlines plots (z = 0.25) for flow over a three-dimensional stationary circular cylinder at Re = 40 and inflow Mach = 0.01
using (a) Parallel-MG and preconditioning, (b) Parallel-MG without preconditioning.

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 681
bubble length, S/cylinder diameter, d) with the experimental results obtained by Nishioka and Sato [51] is
also carried out. Fig. 15 shows the aspect ratio versus Re. With a Re of 40.0, an aspect ratio of 2.35 is
obtained, which agrees well with our preconditioned result (as shown in Fig. 14(a)). As can be observed,
the low speed preconditioning method not only gives better convergence rate, it also helps to improve the
quality of the numerical results when the flow speed is extremely low. This favorable characteristic is very
crucial for compressible unsteady flow computation, especially for the cases where high speed flow field is
embedded in low speed flow region.

5.3.2. Unsteady flow

The purpose here is to validate and assess the capability of the current parallel Navier–Stokes solver uti-
lizing multi-grid and low speed preconditioning method as the basic convergence acceleration techniques.
The computed results are compared with numerical ones obtained by other researchers, and with available
experimental results. The computed lift and drag coefficients on the cylinder versus non-dimensional time with
parallel-MG for an 8-partition mesh are shown in Fig. 16. A pronounced asymmetric wake begins to appear at
non-dimensional time of 30. And the flow becomes completely periodic at a time of 63. It is found that the
Reynold Number

S
/d

20 40 60 80 100

1

2

3

4

5

6

Sd

S/d = 2.35

Fig. 15. Length of seperation bubbles behind cylinder vs. Re [51].

Time

L
if

t
an

d
 D

ra
g

 C
o

ef
fi

ci
en

ts

20 40 60 80 100 120 140

-1

-0.5

0

0.5

1

1.5

2

C l

C d

Fig. 16. Lift and drag coefficients versus physical time for flow over a circular cylinder using 3-level Parallel-MG and preconditioning
(number of sub-iterations = 60 V-cycles, Re = 200, inflow Mach = 0.2).

682 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
number of sub-iterations for MG is much less than that required by single grid (SG) computation, which sig-
nifies that the MG method takes a shorter time than the SG to produce the vortex shedding phenomenon, thus
less CPU time is needed for the flow to become fully periodic. Figs. 17 and 18 present the instant streamlines
Fig. 17. Streamline patterns showing one cycle of vortex shedding using 3-level Parallel-MG and preconditioning (z = 0.25, number of
sub-iterations = 60 V-cycles, Re = 200, inflow Mach = 0.2).

2

8 0 . 1
6

0.120 . 2 0.18

0.2 0
. 2

2

0.22

0

.

2

4

0. 26
0.28

0. 020 . 0 8 0. 1
0.12

0. 24

0. 26
0.28 0

.2
2

0

.

2

4

0 . 2 0.12

0 . 1 6

0

.

3

0. 26

0.22

0

.

2

0.1

0.32 0.10 .1 2 0. 16

0.2 2

0

.

2

2

0.14

0 .1 8 0.2 20. 320. 260. 1
0.28

0.18

0.2X
Y

Z

a

t/T =30.0

0.2

0.18

0.16

0.12

0.2

0
.2

2

0.26

0.3

0. 02

0.04

0
.06

0.1

0.26

0. 24

0.

2

2

0
.2

2

0. 2

0.16

0.06

0.

1

0.24

0. 26

0 .2

0. 16

0. 12

0.22

0. 26

0.28

0.20.16

0. 12

0.26

0.24

0.22

0.32

0.24

0.22

0.12

0. 16

0.2

0.32

0 .26

0.22

0.1

0.12

0
. 1

40

.

1

6

0.2

0.16

0.22

X

Y

Z

b

t/T = 0725

0.1

0. 16

0.18

0.2

0.2

0.22

0. 26

0.3

0
.
0

2

0.08

0.
0 2

0. 02

0. 26

0.24

0.22

0. 28

0.08

0. 2

0. 22

0.26

0.12

0. 16

0

.

2

0. 28

0 .24

0
.2 2

0.12

0.
12

0. 16

0.18

0
.2 2

0. 32

0
.2

6

0
.1

8

0.16

0. 14

0.12

0. 1

0.32

0 .2 8

0 .2 2

0. 18

X

Y

Z

c

 t/T = 0.5

d

 t/T = 0.75

0.16

0.18

0.2

0.2

0.22

0.24

0.26
0.28

0.02

0.3

0.26

0.24

0.22

0.
06

0.16

0.1
0.22

0.2

0.
18 0.2

0.26

0.24

0.22 0.2

0.18

0.16

0.14

0.26

0.24
0.22

0.2 0.180.16

0.14
0.1 2

0.
120.

1 4

0.18

0.26

0.
26

0.3

X

Y

Z

0.18

0.16 0.12

0. 2

0.2

0.22

0.24

0.26

0.3

0.04

0.02

0.16

0.
08 0.1

0.3

0.24

0.22

0.1

0.12

0.16

0.2

0.26

0.22

0.12

0.14

0.2
0.22

0.26

0.24

0.22

0.26

0.32

0.12

0.14

0.16

0.2

0.32

0.26
0.22

0.1

0.12

0.14

0.
18

0.2

X

Y

Z

e

t/T = 1.0

Fig. 18. Mach number contours showing one cycle of vortex shedding using 3-level Parallel-MG and preconditioning (z = 0.25, number of
sub-iterations = 60 V-cycles, Re = 200, inflow Mach = 0.2).

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 683

684 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
and Mach-number contours in one cycle of the von Kármán vortex shedding. Fig. 19 shows the convergence
history in terms of numbers of subiterations in each physical time step for single grid, MG and MG with pre-
conditioning method for a Reynolds number equal to 200. It is obvious that the combination of precondition-
ing and MG contributes significantly to the improvement in convergence within each physical time step, which
is very useful for efficiently computing 3D unsteady flows. The lift coefficient, Cl, drag coefficient, Cd, and
Strouhal number, St, obtained in this work are ±0.65, 1.38 ± 0.046 and 0.196, respectively, and they agree well
with numerical solutions obtained by other researchers as well as with experimental measurements [42,52–54].
And these results are tabulated in Table 7.3.

The performance of the parallel solver for simulating unsteady flow over a cylinder with Re = 200 using
both parallel SG and MG is estimated based on the speedup characteristics, efficiency of parallelization
and comparison between percentage computation and communication time, as shown in Table 7.4. The
speed-up and parallel efficiency of the proposed method is found to be reasonably good. Although parallel
MG has slightly low speed-up compared with parallel SG, the MG computation is still much more efficient
because it requires much less number of sub-iterations for every physical time step.

5.4. Flow over an immersed fixed membrane

This case is to validate and assess the capability and accuracy of the developed method for thin structure
problems. The model examined in this case is a 3D channel flow with a sinus cavity in the middle of the bottom
wall. A rigid membrane is attached to the rigid channel just before the sinus cavity. The channel has a length of
10 L and a width of 1L (L is equal to 20 mm). The radius of the sinus cavity is 0.5 L. The immersed membrane
has a length of 0.5 L and thickness of 0.5 L/100, and it is attached to the bottom wall at an angle of a = 42.5�.
In the region near the membrane the mesh is further refined in order to capture the fine details of the flow. The
No.of Iter

R
es

id
u

al
 D

ro
p

21600 21700 21800 21900 22000

10-5

10-4

10-3

10-2

10-1

100

Single Grid, Non Prec
3-level MG Non Prec

3-level MG Prec

Fig. 19. Unsteady flow convergence history plot (MG used ‘‘V’’ cycle, number of sub-iterations = 60, Re = 200, inflow Mach = 0.2).

Table 7.3
Lift and drag coefficients and Strouhal number for unsteady flow over a three-dimensional circular cylinder (Re = 200)

Researchers Cl Cd St

Present (parallel-MG grid) ±0.65 1.38 ± 0.046 0.196
Tai and Zhao (parallel-MG grid, incompressible solvers) [42] ±0.64 1.31 ± 0.041 0.195
Liu et al. [52] ±0.69 1.31 ± 0.049 0.192
Williamson (Expt.) [53] – – 0.197
Wille (Expt.) [54] – 1.30 –

0
2

4
6

8
10

x-0.5 0 0.5

z

-0.5

0

0.5

1

y

XYZ0

0.25
0.5

y-0.5

0
0.5z

2.5

2.75

3

3.25x

3D membrane meshed with
6,178 triangular elements

3D tube meshed with
116,865 nodes and 706,130

elements

In the region which the
membrane will span over
the mesh is further refined

Fig. 20. Geometry of the computational domain for the flow over an immersed fixed membrane (1 unit length = 20 mm).

Table 7.4
Performance for parallel computation of unsteady flow past a circular cylinder (Re = 200, M = 0.3 with preconditioning)

Performance measuring techniques Single grid Multigrid

Number of CPU Number of CPU

2 4 8 16 2 4 8 16

Speed-up 1.77 3.48 7.02 13.4 1.72 3.29 6.39 10.18

Efficiency 0.89 0.88 0.85 0.81 0.88 0.83 0.79 0.72
Computation time and communication time

(% to total simulation wall-clock time)
99.3 95.2 87.7 79.3 97.2 91.1 82.4 70.1

kt

R
/R

0

0

0

20000

20000

40000

40000

10-4 10-4

10-3 10-3

10-2 10-2

10-1 10-1

100 100

immerse dboundary

internal wall

Fig. 21. Convergence histories with immersed membrane and internal boundary.

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 685

immersed membrane is discretized into triangular cells. A close-up view of the mesh and the immersed mem-
brane is shown in Fig. 20. The inflow Mach number is 0.3 and the Reynolds number is 100. The results are
then compared with those using an internal boundary calculated by the baseline preconditioned compressible
parallel-MG solver. The internal boundary has the same geometry as the immersed membrane, and it is under
the same flow conditions as used by the immersed membrane method.

The convergence history of the simulation given in Fig. 21 shows that the new solver based on the IMM
actually converges faster and better than the baseline solver. Fig. 22 confirms that the two flow fields have
X
0 1 2 3

0

0.5

1

X
-1 0 1 2 3

0

0.5

1

X
0 1 2 3

0

0.5

1

X
-1 0 1 2 3

0

0.5

1

a

b

Fig. 22. (a) Streamlines on the channel central plane with the immersed membrane represented by the IMM; (b) flow field with an internal
boundary computed by baseline solver.

Table 7.5
Properties of vortices of flow field with immersed membrane and flow field with internal boundary

Immersed membrane Internal boundary

Center of the
primary vortex

Center of the
secondary vortex

Center of the
primary vortex

Center of the
secondary vortex

X (mm) 0.932 L 0.067 L 0.923 L 0.047 L
Y (mm) 0.272 L �0.031 L 0.273 L �0.027 L
Vorticity �5.013 0.126 �4.997 0.117

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 687
the same number of vortices with similar shapes, and the u-velocity profiles at the same locations agree well
with each other as found in Fig. 23. Table 7.5 compares the two flow fields quantitatively, which demonstrates
that the results obtained by the IMM agree well with those obtained by the baseline Navier–Stokes solver
using an internal boundary.

6. Conclusions

A new method combining preconditioning, parallel unstructured MG method and a novel treatment of
moving objects in fluids for efficient simulation of 3D unsteady compressible flows has been successfully
developed and validated. The convergence of numerical solutions is found to be significantly improved with
a combination of the preconditioning and unstructured MG methods. And the use of gauge pressure in
pressure gradient terms is found to be important to eliminate round-off errors while the flow speed is very
low. The parallel speed-up and efficiency of the method for both steady and unsteady flows are found to be
reasonably good. The newly developed immersed membrane method is shown to work well with very large
displacements of immersed moving objects. Compared with the immersed boundary method, this method
allows sharp changes of fluid conditions across immersed thin structures without complicated and time-
consuming interpolation and extrapolation. A grid convergence study for the flow generated by a steadily
rotating sphere is carried out, which shows that the method is second-order accurate. The method is also
found to have similar order of accuracy in another study, where a sphere immersed in a cube filled with
fluid oscillates with large amplitude. Results from a flow over a circular cylinder computed by the pro-
posed method are found to agree well with existing numerical and experimental ones. Finally flow over
an immersed membrane is calculated and results are compared with those with the membrane erected
as a wall, and satisfactory agreement is observed. These studies demonstrate that the method proposed
is an effective tool to solve 3D unsteady low-Mach-number compressible flows with arbitrarily moving
objects.

Acknowledgements

This research work is supported by a research scholarship provided by Nanyang Technological University
(NTU). The provision of computing facilities by Nanyang Centre for Supercomputing and Visualization
(NCSV), NTU is acknowledged. The first author would like to thank Dr. Tai Chin Hoe for his valuable dis-
cussion and provision of some data.

Appendix. Preconditioner definition

0 0 00 1

C1 ¼

1=b cT 0 0 0 �q=T

u=b0cT 0 q 0 0 �qu=T 0

v=b0cT 0 0 q 0 �qv=T 0

w=b0cT 0 0 0 q �qw=T 0

H=b0cT 0 � 1 qu qv qw q½c=ðc� 1Þ � H=T 0�

BBBBBB@
CCCCCCA

688 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
where
c ¼ Cp=Cv

c2 ¼ cp=q

T 0 ¼ p=q ¼ c2=c

H ¼ ðqet þ pÞ=q
b0 ¼ b=½1þ ðc� 1Þb�
Noted that C1 is a rank one modification of M (which is defined in the main body) allows one to easily com-
pute the matrix products C�1

1 M and M�1C1(which will be needed) via the Sherman–Morrison–Woodbury
formula.

The general preconditioned Jacobian matrix is
eH p ¼ C�1
1 H p ¼ C�1

1

oF c

oW p
¼

bU qbcT 0nx qbcT 0ny qbcT 0nz 0

nx=q U 0 0 0

ny=q 0 U 0 0

nz=q 0 0 U 0

Uðc� 1Þðb� 1Þ=ðqcÞ ðc� 1ÞbT 0nx ðc� 1ÞbT 0ny ðc� 1ÞbT 0nz U

26666664

37777775

where U = nxu + nyv + nzw, with nx, ny, nz are the unit normalized vectors. The eigenvalues of eH p are
kð eH pÞ ¼ k0 ¼ U ; k0 ¼ U ; k0 ¼ U ; k1;2 ¼
ðbþ 1ÞU � S

2

� �
ffiq
where S ¼ U 2ðb� 1Þ2 þ 4bc2.
The right eigenvectors of eH p are
X eH p ;R
¼

0 0 0 ðbU � k2Þ=S ðk1 � bUÞ=S

0 �nz ny nx=ðqSÞ �nx=ðqSÞ
nz 0 �nx ny=ðqSÞ �ny=ðqSÞ
�ny nx 0 nz=ðqSÞ �nz=ðqSÞ
nx ny nz ðc� 1ÞðbU � k2Þ=ðcqSÞ ðc� 1Þðk1 � bUÞ=ðcqSÞ

26666664

37777775

And the corresponding left eigenvectors matrix is given by
X eH p ;L
¼

�ðc� 1Þnx=ðcqÞ 0 nz �ny nx

�ðc� 1Þny=ðcqÞ �nz 0 nx ny

�ðc� 1Þnz=ðcqÞ ny �nx 0 nz

1 qðk1 � bUÞnx qðk1 � bUÞny qðk1 � bUÞnz 0

1 qðk2 � bUÞnx qðk2 � bUÞny qðk2 � bUÞnz 0

26666664

37777775

References

[1] X.Y. Luo, T.J. Pedley, A numerical simulation of unsteady flow in a two-dimensional collapsible channel, J. Fluid Mech. 314 (1996)
191–225.

[2] X.Y. Luo, T.J. Pedley, Numerical simulation of steady flow in a 2-D Collapsible channel, J. Fluids Struct. 9 (1995) 149–197.
[3] X.Y. Luo, T.J. Pedley, The effect of wall inertia on flow in a two-dimensional collapsible channel, J. Fluid Mech. 363 (1998) 253–

280.
[4] Y. Zhao, F. Ahmed, A general method for simulation of fluid flows with moving and compliant boundaries using unstructured grids,

Comput. Methods Appl. Mech. Eng. 192/39–40 (2003) 4439–4466.
[5] Y. Zhao, C.H. Tai, F. Ahmed, Simulation of micro flows with moving boundaries using high-order upwind FV method on

unstructured grids, Comput. Mech. 28 (1) (2002) 66–75.
[6] A.L. Gaitonde, A dual-time method for two-dimensional unsteady incompressible flow calculations, Int. J. Numer. Methods Eng. 41

(1998) 1153–1166.

X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690 689
[7] A.L. Gaitonde, An artificial compressibility method for the solution of the 2D incompressible Navier–Stokes equations, Report no.
715, Aero. Eng. Dept., Bristol University, 1995.

[8] P.A. Mendes, F.A. Branco, Analysis of fluid–structure interaction by an arbitrary lagrangian–eulerian finite element formulation, Int.
J. Numer. Methods Fluids 30 (1999) 897–919.

[9] A. Anju, A. Marauoka, M. Kawahara, 2-D Fluid–Structure Interaction Problems by an Arbitrary Lagrangian–Eulerian Finite
Element Method, The Gordon and Breach Publishing Group, 1995.

[10] M. Heil, Stokes flow in an elastic tube – A large-displacement fluid–structure interaction problem, Int. J. Numer. Methods Fluids 28
(1998) 243–265.

[11] E. Lefrancois, G. Dhatt, D. Vandaromme, Fluid–structure interaction with application to rocket engines, Int. J. Numer. Methods
Fluids 30 (1999) 865–895.

[12] Peskin Charles Samuel, Flow patterns around heart valves: a digital computer method for solving the equations of motion, Ph.D
Thesis, Albert Einstein College of Medicine, Yeshiva University, 1972.

[13] L. Zhu, C.S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, J. Comput.
Phys. 179 (2002) 452–468.

[14] M.F. McCracken, C.S. Peskin, A vortex method for blood flow past heart valves, J. Comput. Phys. 35 (1980) 183–205.
[15] A.L. Fogelson, A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting, J.

Comput. Phys. 56 (1984) 111–134.
[16] A.L. Fogelson, Mathematical and computational aspects of blood clotting, in: Proceedings of the 11th IMACS World Congress on

System Simulation and Scientific Computation, vol. 3, 5–8, North Holland, New York, 1985.
[17] J.M. Stockie, S.I. Green, Simulating the motion of flexible pulp fibres using the immersed boundary method, J. Comput. Phys. 147

(1998) 147–165.
[18] R. Glowinski et al., A fictitious domain for dirichlet problems and applications, Comput. Methods Appl. Mech. Eng. 111 (1994) 283–

303.
[19] R. Glowinski et al., A fictitious domain for external incompressible viscous flow modeled by Navier–Stokes equations, Comput.

Methods Appl. Mech. Eng. 112 (1994) 133–148.
[20] J. De Hart, Fluid–structure interaction in the aortic valve: a three-dimensional computational analysis, Ph.D. Thesis, Eindhoven

University of Technology, 2002.
[21] F.P.T. Baaijens, A fictitious domain/mortar element method for fluid–structure interaction, Int. J. Numer. Methods Fluids 35 (7)

(2001) 743–761.
[22] J. De Hart et al., A two-dimensional fluid–structure interaction model of the aortic valve, J. Biomech. 33 (9) (2000) 1079–1088.
[23] J. De Hart et al., A three-dimensional computational analysis of fluid–structure interaction in the aortic valve, J. Biomech. 36 (2003)

103–112.
[24] J. De Hart, Fluid–structure interaction in the aortic valve: a three-dimensional computational analysis, Ph.D. Thesis, Eindhoven

University of Technology, 2002.
[25] R. Glowinski et al., A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid

bodies: application to particulate flow, J. Comput. Phys. 169 (2001) 363–426.
[26] Yu. Zhaosheng, A DLM/FD method for fluid/flexible-body interactions, J. Comput. Phys. 207 (2005) 1–27.
[27] C.H. Tai, Y. Zhao, K.M. Liew, Parallel computation of unsteady incompressible viscous flows around moving rigid bodies using an

immersed object method with overlapping grids, J. Comput. Phys. 207 (20 July) (2005) 151–172.
[28] C. Liu, X. Zheng, C.H. Sung, Preconditioned multigrid methods for unsteady incompressible flows, J. Comput. Phys. 139 (1998) 35–

57.
[29] P.T. Lin, Implicit time dependent calculations for compressible and incompressible flows on unstructured meshes, M.Sc. Thesis,

Department of Mechanical and Aerospace Engineering, Princeton University, 1994.
[30] C.H. Tai, Y. Zhao, A finite volume unstructured multigrid method for efficient computation of unsteady incompressible viscous flows,

Int. J. Numer. Methods Fluids 46 (1) (2004) 59–84.
[31] Y. Zhao, B.L. Zhang, A high-order characteristics upwind fv method for incompressible flow and heat transfer simulation on

unstructured grids, Comput. Methods Appl. Mech. Eng. 25 (6) (2001) 523–536.
[32] N.A. Pierce, M.B. Giles, Preconditioning compressible flow calculations on stretched meshes, AIAA Paper 96-0889, 1996.
[33] P. Moinier, M.B. Giles, Stability analysis of preconditioned approximations of the Euler equations on unstructured meshes, J.

Comput. Phys. 178 (2002) 498–519.
[34] P. Moinier, M.B. Giles, Preconditioned Euler and Navier–Stokes calculations on unstructured grids, in: 6th ICFD Conference on

Numerical Methods for Fluid Dynamics, Oxford, UK, 1998.
[35] S. Venkateswaran, D. Li, C.L. Merkle, Influence of stagnation regions on preconditioned solutions at low speeds, AIAA-2003-0435,

41st Aerospace Sciences Meeting and Exhibit, Reno, NV, January 6–9, 2003.
[36] S. Venkateswaran, C.L. Merkle, Dual-time stepping and preconditioning for unsteady computations, AIAA Paper 95-0078, 33rd

Aerospace Sciences Meeting and Exhibit, January 9–12, 1995.
[37] S. Venkateswaran, P.E.O. Buelow, C.L. Merkle, Development of linearized preconditioning methods for enhancing robustness and

efficiency of Euler and Navier–Stokes computations, AIAA Paper 97-2030, 1997.
[38] S. Venkateswaran, C.L. Merkle, Analysis of time-derivative preconditioning for the Navier–Stokes equations, in: 6th International

Symposium on Computational Fluid Dynamics, 1995, pp.1323–1328.
[39] E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, J. Comput. Phys. 72

(1987).

690 X. Lv et al. / Journal of Computational Physics 215 (2006) 661–690
[40] B. Van Leer, W.T. Lee, P.L. Roe, Characteristic time-stepping or local preconditioning of the Euler equations, AIAA Paper 91-1552,
1991.

[41] J.M. Weiss, W.A. Smith, Preconditioning applied to variable and constant density flows, AIAA J. 33 (11) (1995) 2050.
[42] C.H. Tai, Y. Zhao, Parallel unsteady incompressible viscous flow simulation using an unstructured multigrid method, J. Comput.

Phys. 192 (1) (2003) 277–311. http://www.academicpress.com/jcp.
[43] A. Singh, Y. Zhao, Parallel unstructured dynamic grid direct Monte Carlo simulation of molecular gas dynamics and the associated

thin film deposition, computational fluid and solid mechanics, in: K.J. Bathe (Ed.), Elsevier Science, The First MIT Conference on
Computational Fluid and Solid Mechanics, June 11–13, 2001, MIT, Cambridge, MA 02139, USA.

[44] W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel programming with the message-passing interface, The MIT Press,
Cambridge, MA, 1994.

[45] G. Karypis, V. Kumar, Metis: a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-
reducing orderings of sparse matrices, Version 4.0, University of Minnesota, Department of Computer Science, September 1998.

[46] G.H. Xia, Y. Zhao, J.H. Yeo, An immersed membrane method for simulation of fluid–structure interaction in bio-fluid flows, in: 1st
International BioEngineering Conference (IBEC 2004), 08–10 September 2004.

[47] R. Mittal, G. Iaccarino, Immersed boundary method, Annu. Rev. Fluid Mech. 37 (2005) 239–261.
[48] A. Gilmanov, F. Sotiropoulos, A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex,

moving bodies, J. Comput. Phys. 207 (2) (2005) 457–492.
[49] S.C.R. Dennis, S.N. Singh, D.B. Ingham, The steady flow due to a rotating sphere at low and moderate Reynolds numbers, Phys.

Fluids 101 (1980) 257–279.
[50] Van Dyke, D. Milton, An Album of Fluid Motion, Parabolic Press, Stanford, CA, 1982.
[51] M. Nishioka, H. Sato, Mechanism of determination of the shedding frequency of vortices behind a cylinder at low Reynolds numbers,

J. Fluid Mech. 89 (1978) 49–60.
[52] C. Liu, X. Zheng, C.H. Sung, Preconditioned multigrid methods for unsteady incompressible flows, J. Comput. Phys. 139 (1998) 35–

57.
[53] C.H.K. Williamson, Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of

a circular cylinder, Phys. Fluids 31 (1988) 2742–2744.
[54] R. Wille, Karman Vortex Streets, in: Advances in Applied Mechanics, vol. 6, Academic, New York, 1960, pp. 273–287.

http://www.academicpress.com/jcp

	An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3D unsteady compressible flows with moving objects
	Introduction
	Governing equations and numerical methods
	Governing equations
	Numerical methods
	Boundary treatment

	The parallel unstructured multigrid method
	The immersed membrane method (IMM)
	Results and discussion
	Order of accuracy
	Flow induced by an oscillating sphere in a closed cavity
	Parallel computation of flow past a circular cylinder
	Steady flow
	Unsteady flow

	Flow over an immersed fixed membrane

	Conclusions
	Acknowledgements
	Appendix. Preconditioner definition
	References

